
MATH 558 EXAM I SOLUTIONS

Name:

Statements and Definitions.

1. Let X be a set and ∼ a relation on X.

(i) State what it means for ∼ to be an equivalence relation.

Solution.

(a) x ∼ x, for all x ∈ X.
(b) For all x1, x2 ∈ X, if x1 ∼ x2, then x2 ∼ x1.
(c) For all x1, x2, x2 ∈ X, if x1 ∼ x2 and x2 ∼ x3, then x1 ∼ x3.

(ii) Assuming ∼ is an equivalence relation, for x ∈ X, define [x], the equivalence class of x.

Solution.

[x] = {x′ ∈ X | x′ ∼ x}

(iii) Assume ∼ is an equivalence relation. For x1, x2 ∈ X, what can you say about the relationship between
[x1] and [x2]?

Solution.

[x1] = [x2] or [x1] ∩ [x2] = ∅
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2. State the Well Ordering Principle.

Solution.

First version: Every non-empty set of positive integers has a least element.

Second Version: Every set of integers that is bounded below has a least element.

Either version is acceptable

3. Define the greatest common divisor of two integers a, b and state one property you know about the
greatest common divisor of a and b.

Solution.

The greatest common divisor of a and b is the largest integer that divides both a and b. Some properties
are:

(a) The gcd of a and b is divisible by any common divisor of a and b.
(b) The gcd of a and b is unique.
(c) The gcd of a and b can be written as an integer combination of a and b.
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4. State the Fundamental Theorem of Arithmetic for the integers.

Solution.

Every positive integer n can be written as a product n = p1 · · · pr, where each pj is a prime number and
p1 ≤ · · · ≤ pr. Moreover, if n = q1 · · · qs, with q1 ≤ · · · ≤ qs and each qj is prime, then r = s and
p1 = q1, . . . , pr = qr.

5. State the Fundamental Theorem of Arithmetic for monic polynomials with coefficients in F .

Solution.

Every polynomial monic f(x) of degree greater than zero can be written as a product f(x) = p1(x) · · · pr(x),
where each pj(x) is a monic irreducible polynomial with coefficients in F . Moreover, if f(x) = q1(x) · · · qs(x),
with each qj(x) a monic irreducible polynomial with coefficients in F , then r = s and after re-indexing,
p1(x) = q1(x), . . . , pr(x) = qr(x).
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Short Answer. 1. Use mathematical induction to prove that n! > 2n, for all n ≥ 4.

Solution.

Base case: 4! = 24 > 16 = 24

Inductive step: Suppose n! > 2n. Multiply both side by n + 1 to get:

(n + 1)! = (n + 1) · n! > (n + 1) · 2n > 2 · 2n = 2n+1.

Note to class: This was the original intended problem - without the typo appearing on exam day.

2. Use the Euclidean algorithm to find the greatest common divisor of 42 and 72 and then use what you
have derived to write the greatest common divisor as an integer combination of 42 and 72.

Solution.

72 = 1 · 42 + 30

42 = 1 · 30 + 12

30 = 2 · 12 + 6

12 = 2 · 6 + 0,

Thus, 6 is the gcd of 72 and 42. Using backwards substitution, starting with the last equation, we get:

6 = 30− 2 · 12

6 = 30− 2 · (42− 30)

6 = 3 · 30− 2 · 42

6 = 3 · (72− 42)− 2 · 42

6 = 3 · 72− 5 · 42),

which gives what we want.
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Proof Presentation. Give a rigorous proof of the following statement. Let f(x) and g(x) be non-zero
polynomials in F [x]. Then there exist q(x) and r(x) in F [x] such that g(x) = f(x) · q(x) + r(x) and the
degree of r(x) is strictly less than the degree of f(x).

Solution.

Suppose g(x) has degree less than the degree of f(x). Then g(x) = 0 · f(z) + g(x).

If deg g(x) ≥ deg f(x), write g(x) = bmxm + · · ·+ b0 and f(x) = anx
n + · · ·+ a0, and proceed by induction

on deg g(x).

Suppose m = n. Then r(x) = g(x)− bn
an
· f(x) has degree less than the degree of f(x). Thus,

g(x) =
bn
an
· f(x) + r(x).

If m > n, then we note that g0(x) = g(x) − bm
an

xm−n · f(x) has degree less than the degree of g(x). By

induction, we can write g0(x) = q0(x) · f(x) + r(x), where the degree of r(x) is less than the degree of f(x).
Thus, g(x) = ( bm

an
xm−1 + q0(x)) · f(x) + r(x), which gives what we want.
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